Bhasin H. - Hands-on Deep Learning [2024, PDF/EPUB, ENG]

Ответить на тему Главная » Литература » Книги FB2 » Учебно-техническая литература
Статистика раздачи
Размер:  34.56 MB   |    Зарегистрирован:  6 месяца 4 дня   |    Скачано:  183 раза
Работает мультитрекерная раздача

Полного источника не было: Никогда

 
Автор Сообщение

MAGNAT ®

Пол: Мужской

Стаж: 10 месяца 30 дня

Сообщений: 28494

Откуда: RU

Наличие запрета: Нету запретов


Награды: 16 (Подробнее)

Активный релизер 5 (Количество: 1) Активный сидер 4 (Количество: 1) Активный релизер 4 (Количество: 1) Активный сидер 1 (Количество: 1) Активный релизер 3 (Количество: 1)
Вне форума [Профиль] [ЛС]

Создавать темы 01-Июн-2025 13:00 | #1 · Автор

[Код]

Hands-on Deep Learning
Год издания: 2024
Автор: Bhasin H.
Издательство: Apress
ISBN: 979-8-8688-1035-0
Язык: Английский
Формат: PDF/EPUB
Качество: Издательский макет или текст (eBook)
Интерактивное оглавление: Да
Количество страниц: 373
Описание: This book discusses Deep Learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on Deep Learning techniques and shows how to apply them across a wide range of practical scenarios.
The book begins with an introduction to the core concepts of Deep Learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning, providing insights into various Deep Learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT.
The Deep Learning methods extract the appropriate features and select the most important ones without explicitly stating which one to use. Moreover, Deep Learning generally results in better performance provided that a sufficient amount of data is given as input to the model. They use state-of-the-art optimization methods and make appropriate use of the hardware. Formally, Deep Learning may be defined as follows:
Deep-learning methods are representation-learning methods with multiple levels of representation, obtained by composing simple but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level.
By the end of this book, you will have gained a thorough understanding of Deep Learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems.
What You Will Learn:
- What are deep neural networks?
- What is transfer learning, multi-task learning, and end-to-end learning?
- What are hyperparameters, bias, variance, and data division?
- What are CNN and RNN?

Примеры страниц (скриншоты)

Оглавление

About the Author xiii
About the Technical Reviewers xv
Acknowledgments xix
Chapter 1: Revisiting Machine Learning 1
Chapter 2: Introduction to Deep Learning 43
Chapter 3: Neural Networks 59
Chapter 4: Training Deep Networks 111
Chapter 5: Hyperparameter Tuning 133
Chapter 6: Convolutional Neural Networks: I 157
Chapter 7: Convolutional Neural Network: II 185
Chapter 8: Transfer Learning 207
Chapter 9: Recurrent Neural Network 225
Chapter 10: Gated Recurrent Unit and Long Short-Term Memory 257
Chapter 11: Autoencoders 287
Chapter 12: Introduction to Generative Models 307
Appendix A: Classifying The Simpsons Characters 323
Appendix B: Face Detection 331
Appendix C: Sentiment Classification Revisited 335
Appendix D: Predicting Next Word 343
Appendix E: COVID Classification 347
Appendix F: Alzheimer’s Classification 351
Appendix G: Music Genre Classification Using MFCC and Convolutional
Neural Network 355
Index 359
Bhasin H. - Hands-on Deep Learning [2024, PDF/EPUB, ENG] [uztracker.net-24944].torrent  
Торрент: Зарегистрирован [ 2025-06-01 13:00 ]

info_hash: 704835E7C5A8FE82E9AE284745C7777A3BA5695C

Скачать .torrent


11 KB

Статус: проверено · MAGNAT · 6 месяца 4 дня назад
Скачано: 183 раза
Размер: 34.56 MB
Оценка: 
(Голосов: 0)
Поблагодарили: 0  Спасибо
Показать сообщения:    
Ответить на тему Главная » Литература » Книги FB2 » Учебно-техническая литература

Текущее время: 05-Дек 17:49

Часовой пояс: UTC + 5



Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы можете скачивать файлы

[  Время выполнения: 0,6388 сек  |  MySQL: 0,6230 сек (98%) · 19 запр.  |  сжатие Gzip: выкл  |  Память: 394.19 KB / 2.68 MB / 1.68 MB  ] |  |  |