[AI] Williams Neil - Python GPT Cookbook / Книга рецептов Python GPT [2025, PDF/EPUB, ENG]

Ответить на тему Главная » Литература » Книги FB2 » Учебно-техническая литература
Статистика раздачи
Размер:  13.97 MB   |    Зарегистрирован:  6 месяца 4 дня   |    Скачано:  119 раза
Работает мультитрекерная раздача

Полного источника не было: Никогда

 
Автор Сообщение

MAGNAT ®

Пол: Мужской

Стаж: 10 месяца 30 дня

Сообщений: 28494

Откуда: RU

Наличие запрета: Нету запретов


Награды: 16 (Подробнее)

Супер мега релизер (Количество: 1) Мега релизер (Количество: 1) Активный релизер 3 (Количество: 1) Активный сидер 4 (Количество: 1) Активный релизер 1 (Количество: 1)
Вне форума [Профиль] [ЛС]

Создавать темы 01-Июн-2025 12:54 | #1 · Автор

[Код]

Python GPT Cookbook: 75+ practical recipes for building NLP solutions for the real world / Книга рецептов Python GPT: более 75 практических рецептов по созданию NLP-решений для реального мира
Год издания: 2025
Автор: Williams Neil
Издательство: BPB Publications
ISBN: 978-93-65892-062
Язык: Английский
Формат: PDF/EPUB
Качество: Издательский макет или текст (eBook)
Интерактивное оглавление: Да
Количество страниц: 628
Описание: GPT has redefined the landscape of AI, enabling the creation of powerful language models capable of diverse applications. The objective of the Python GPT Cookbook is to equip readers with practical recipes and foundational knowledge to build business solutions using GPT and Python.
The book is divided into four parts. The first covers the basics, the second teaches the fundamentals of NLP, the third delves into applying GPT in various fields, and the fourth provides a conclusion. Each chapter includes recipes and practical insights to help readers deepen their understanding and apply the concepts presented. This cookbook approach delivers 78 practical recipes, including creating OpenAI accounts, utilizing playgrounds and API keys. You will learn text preprocessing, embeddings, fine-tuning, and GPT integration with Hugging Face. Learn to implement GPT using PyTorch and TensorFlow, convert models, and build authenticated actions. Applications include chatbots, email summarization, DBA copilots, and use cases in marketing, sales, IP, and manufacturing.
By the end of the book, readers will have a robust understanding of GPT models and how to use them for real-world NLP tasks, along with the skills to continue exploring this powerful technology independently.
What you will learn
● Learn Python, OpenAI, TensorFlow, Hugging Face, and vector databases.
● Master Python for NLP applications and data manipulation.
● Understand and implement GPT models for various tasks.
● Integrate GPT with various architectural components, such as databases, third-party APIs, servers, and data pipelines
● Utilise NLTK, PyTorch, and TensorFlow for advanced NLP projects.
● Use Jupyter for interactive coding and data analysis.
Who this book is for
The Python GPT Cookbook is for IT professionals and business innovators who already have basic Python skills. Data scientists, ML engineers, NLP engineers, and ML researchers will also find it useful.
Технология GPT изменила ландшафт искусственного интеллекта, позволив создавать мощные языковые модели, пригодные для различных применений. Цель книги рецептов Python GPT - предоставить читателям практические рецепты и базовые знания для создания бизнес-решений с использованием GPT и Python.
Книга разделена на четыре части. В первой рассказывается об основах, во второй - об основах NLP, в третьей - о применении NLP в различных областях, а в четвертой дается заключение. Каждая глава содержит рецепты и практические рекомендации, которые помогут читателям углубить понимание и применить представленные концепции. В этой книге рецептов представлено 78 практических рецептов, включая создание аккаунтов OpenAI, использование игровых площадок и ключей API. Вы узнаете о предварительной обработке текста, встраивании, тонкой настройке и интеграции GPT с Hugging Face. Научитесь внедрять GPT с помощью PyTorch и TensorFlow, преобразовывать модели и создавать аутентифицированные действия. Приложения включают чат-ботов, рассылку сообщений по электронной почте, помощников администратора базы данных и примеры использования в маркетинге, продажах, интеллектуальной собственности и производстве.
К концу книги читатели получат четкое представление о моделях GPT и о том, как их использовать в реальных задачах NLP, а также навыки, необходимые для самостоятельного изучения этой мощной технологии.
Что вы узнаете
● Изучите базы данных Python, OpenAI, TensorFlow, Hugging Face и vector.
● Освоите Python для приложений NLP и манипулирования данными.
● Понимание и внедрение моделей GPT для различных задач.
● Интеграция GPT с различными архитектурными компонентами, такими как базы данных, сторонние API, серверы и конвейеры передачи данных
● Использование NLTK, PyTorch и TensorFlow для продвинутых проектов NLP.
● Используйте Jupyter для интерактивного программирования и анализа данных.
Для кого предназначена эта книга
Книга рецептов по Python GPT предназначена для ИТ-специалистов и бизнес-новаторов, которые уже владеют базовыми навыками работы с Python. Специалисты по обработке данных, инженеры ML, инженеры NLP и исследователи ML также найдут ее полезной.

Примеры страниц (скриншоты)

Оглавление

1. Introduction to GPT
Introduction
Structure
Objectives
GPT's family tree
Data science
Natural language processing
OpenAI and GPT
Evolution of GPT models
OpenAI’s API Service
OpenAI keys
Python integration
ChatGPT
Recipes
1. Creating an OpenAI account
2. OpenAI Playgrounds
3. Managing API keys
4. Adding members
Part 1, Adding an owner
Part 2, Inviting readers
Part 3, Service account
Wrapping up
Conclusion
Points to remember
Further reading
Exercises
2. Crafting Your GPT Workspace
Introduction
Structure
Objectives
Python with Visual Studio Code
Installing Visual Studio Code
Setting up a Python environment
Key features
Jupyter Notebooks
Getting started with Jupyter in VS Code
Key features
Integration with other tools
Jupytext: Bridging notebooks and text files
Why use Jupytext
Using Jupytext in VS Code
NLP toolbox
Alternative developer environments
Recipes
5. Using iPython Secrets
6. Hello NLP Toolbox
Part 1, OpenAI’s Python Client Library
Part 2, spaCy
Part 3, Hugging Face Transformers (GPT-2)
7. Setting up and using GitHub Codespaces for NLP projects
8. Using Azure ML Notebook
Conclusion
Points to remember
Exercises
3. Pre-processing
Introduction
Structure
Objectives
Tokenization
Lowercasing
Removing punctuation and special characters
Removing stop words
Stemming and lemmatization
Stemming and lemmatization in the context of GPT
Padding and truncation
Encoding
Handling missing values
Missing values in text data
Handling missing values with GPT
Recipes
9. Byte-Pair Encoding principles
Use cases
Requirements
Step-by-step implementation
Output with explanation
10. Encoding and decoding with SentencePiece
Requirements
Step-by-step implementation
Summing up
11. Tokenizing with GPT and Hugging Face
Requirements
Step-by-step implementation
Example output
Summing up
12. Removing stop words with NLTK
Use cases
Requirements
Step-by-step implementation
Summing up
13. String translation with Python
Use cases
Requirements
Step-by-step implementation
Summing up
14. Stemming and lemmatization with NLTK
Use cases
Requirements
Step-by-step implementation
Summing up
15. Standard library padding and truncation
16. Padding and truncation in practice with GPT
17. Encoding in practice with GPT
Step-by-step implementation
Summing up
18. How to count tokens with tiktoken
Step-by-step implementation
Summing up
19. Imputing missing words with GPT
Conclusion
Points to remember
Further reading
Exercises
4. Embeddings
Introduction
Structure
Objectives
Background of embeddings
Exploring the utility of embeddings
Working of embeddings
OpenAI API and embeddings
Applications
Types of embeddings
Word embeddings
Item embeddings
Graph embeddings
Custom embeddings
Mathematical foundations
Vector spaces
Distance metrics
Dimensionality reduction
Pre-trained embeddings
Vocabulary management
Applications and use cases
Text similarity and clustering
Recommendation systems
Sentiment analysis
Translation
Visualizing embeddings
Recipes
20. Loading pre-trained word embeddings
21. Text pre-processing for embeddings
Explanation
Use cases
Requirements
Pre-processing with NLTK
Pre-processing with SpaCy
Summing up
22. Using OpenAI’s models with text input
Explanation of the code
23. Calculating the similarity between embeddings
Embedding similarity using NumPy
Embedding similarity using SciPy
24. Visualizing embeddings using t-SNE
2D visualisation
3D visualisation
25. Applying embeddings for text classification
Step 1, pre-processing
Step 2, embeddings
Step 3, building a classification model
Step 4, testing
Summing up
26. Handling out-of-vocabulary words
Example 1
Example 2
Summing up
Conclusion
Points to remember
Exercises
Further reading
5. Classifying Intent
Introduction
Structure
Objectives
Overview
Evaluation metrics
Why metrics matter
Key metrics and confusion matrices
Real-world considerations
Datasets
Importance of high-quality datasets
Generally available datasets
Challenges in dataset preparation
Practical techniques and tools
Role of datasets in the development pipeline
Preparing for the recipes
Techniques
Feature-based machine learning
How feature-based models work
Summary
Deep learning and fine-tuned LLMs
Zero-shot and few-shot learning
Summing up
Recipes
27. Explore the CLINC150 dataset
Get the data
Draw a word cloud
Analyze topics
Check for duplicate phrases
Summing up
28. Zero-shot and few-shot learning
Zero-shot with gpt-4o-mini
One-shot with gpt-4o-mini
Few-shot with gpt-4o-mini
Summing up
29. DistilBERT finely tuned
Get tokenizer and model
Quick look
Test a balanced sample
Plot a confusion matrix
Inspect the confusion
Summing up
30. SGDClassifier of intents
Data preparation
Pipeline setup
Training the model
Classifying sample inputs
Confusion matrix
Pickle the pipeline
31. MLflow
Get samples
Load the model
Run an experiment
Explore the GUI
Conclusion
Points to remember
Exercises
Further reading
6. Hugging Face and GPT
Introduction
Structure
Objectives
Hugging Face basics
Transformers library
Model hub
Tokenization and preprocessing
Integration with OpenAI's GPT models
Community and collaboration
Hugging Face and OpenAI
Historical context
Integration of GPT models
Broadening AI access
Shifts toward competitive dynamics
Community engagement and educational outreach
Recipes
32. Text generation
Step 1, install required libraries
Step 2, load the model and tokenizer
Step 3, define the text prompt
Step 4, tokenize the prompt
Step 5, generate the text
Step 6, decode and display the output
Summing up
33. Fine-tuning models for custom tasks
Step 1, install required libraries
Step 2, load and prepare the dataset
Step 3, tokenize the dataset
Step 4, modify the dataset for sequence classification
Step 5, initialize the model for sequence classification
Step 6, define custom functions
Step 7, training arguments and trainer
Step 8, train and evaluate the model
Summing up
34. Sentiment analysis
Step 1, install required libraries
Step 2, create a sentiment analysis pipeline
Step 3, prepare the text for analysis
Step 4, analyze the sentiment
Step 5, interpret and display the result
Summing up
35. Question answering
Step 1, suppress warnings
Step 2, create a question answering pipeline
Step 3, prepare the context and question
Step 4, ask the question and get the answer
Step 5, interpret and display the result
Summing up
36. Text summarization
Step 1, install required libraries
Step 2, create a summarization pipeline
Step 3, prepare the text to be summarized
Step 4, generate the summary
Step 5, interpret and display the result
Summing up
37. Language translation
Step 1, install required libraries and import dependencies
Step 2, choose source and target languages
Step 3, load tokenizer and model
Step 4, prepare text for translation
Step 5, tokenize and translate the text
Summing up
Conclusion
Points to remember
Exercises
Further reading
7. Vector Databases
Introduction
Structure
Objectives
Fundamental concepts of vector databases
Exploration of tools and techniques
Annoy
Facebook AI Similarity Search
Locality-Sensitive Hashing
Tree-based structures
NN search in high-dimensional vectors
Recipes
38. Installing Annoy
39. Generating embeddings of book descriptions
Step 1, initialize
Step 2, get the corpus
Step 3, create the embeddings
Step 4, build the index
Step 5, perform a query
Summing up
40. Analyzing book descriptions
Step 1, import modules
Step 2, load the Annoy database (100 books)
Step 3, create a distance matrix
Step 4, plot a histogram
Step 5, find the outliers
Step 6, print out the titles of the outliers
Summing up
41. Answering questions on current events
Step 1, demonstration of knowledge cut off
Step 2, download a corpus with current events
Step 3, tokenize
Step 4, vectorize
Step 5, get test data
Step 6, answer questions based on the context
Summing up
42. Exploring Nobel Prize motivations
Step 1, create a bag of words
Step 2, show a simple word cloud
Step 3, analyze the bag of words
Step 4, simple scatter plot
Step 5, embed and cluster the words
Step 6, Levenshtein distance
Step 6, fancy scatter plot
Summing up
Conclusion
Points to remember
Exercises
Further reading
8. GPT, PyTorch, and TensorFlow
Introduction
Structure
Objectives
PyTorch
Introduction to PyTorch
Wrapping up
Tensors and computational graphs
Tensors
Computational graphs and autograd
Wrapping up
Building neural networks in PyTorch
nn.Module: The base class
Layers and activation functions
Sequential containers
Loss functions
Optimizers
Training loop
Evaluation and utilities
Wrapping up
TensorFlow
Introduction to TensorFlow
Tensors, variables, and operations
Tensors
Variables
Operations (Ops)
Wrapping up
Defining neural networks in TensorFlow
Layers and units
Activation functions
Model definition
Wrapping up
TensorFlow Extended and deployment
Overview of TensorFlow Extended
TFX pipeline
TensorFlow Serving
Deployment to other platforms
Wrapping up
Comparing PyTorch and TensorFlow for GPT implementation
Performance and scalability
Wrapping up
API and usability
Wrapping up
Community support and ecosystem
Wrapping up
Recipes
43. Implementing GPT with PyTorch
44. Implementing GPT with TensorFlow
45. Converting GPT models: PyTorch to TensorFlow
46. Converting GPT models: TensorFlow to PyTorch
Use cases
Explanation of the recipe
Requirements
Additional details
Practical considerations
The code
Conclusion
Points to remember
Exercises
Without Hugging Face
With Hugging Face
Further reading
9. Custom GPT Actions
Introduction
Structure
Objectives
Background
Authentication
Going live
Recipes
47. Hello world action with no authentication
Step 1, FastAPI setup
Step 2, creating a custom GPT
Step 3, adding an action to a custom GPT
Summing up
48. Hello world action with service level auth
Step 1, FastAPI code
Step 2, OpenAPI schema
Step 3, Integrating with custom GPT
Summing up
49. OAuth hello world action
Step 1, FastAPI code
Step 2, OpenAPI schema
Step 3, integrating with custom GPT
Summing up
50. Hello world action with GitHub authentication
Step 1, preliminaries
Step 2, FastAPI code
Step 3, OpenAPI schema
Step 4, integrating with custom GPT
Summing up
51. Hello world action with consequential control
Step 1, FastAPI code
Step 2, OpenAPI schema
Step 3, using the consequential control feature
Summing up
52. Multi-authentication hello world action
Step 1, FastAPI code
Step 2, OpenAPI schema
Step 3, implementing multi-authentication
Summing up
53. Task manager action
Step 1, set up FastAPI
Step 2, data model
Step 3, endpoints
Step 4, run the server
Summing up
54. Weather information action
Step 1, set up the FastAPI code
Step 2, define the asynchronous function
Step 3, create the endpoint with background tasks
Summing up
Conclusion
Points to remember
Exercises
Further reading
10. Integrating GPT with the Enterprise
Structure
Objectives
Chatbots and chat applications
Enterprise search systems
Third-party APIs
Working of third-party APIs
Tools and standards
Application in GPT projects
Authentication and security
Handling errors and rate limits
Data pipelines
Working of data pipelines
Key components of data pipelines
Practical implementations
Assurance
Open-source issues and risks
Software quality and security concerns
Challenges in project lifecycle management
Scalability and performance limitations
Operating system for AI
Recipes
55. Chat application
Step 1, initial setup and imports
Step 2, setting the API key
Step 3, callback function
Step 4, UI components and initialization
Bringing it all together
56. Indexing chats with Elasticsearch
Step 1, run Elasticsearch locally
Step 2, design and implement the Elasticsearch index
Step 3, index mocked up conversations
Step 4, NLTK analysis with Panel dashboard
Wrapping up
57. Summarize incoming email
Step 1, install Prefect
Step 2, connect to a Prefect API
Step 3, write a Prefect flow
Step 4, run the flow
Step 5, create a work pool
Step 6, deploy and schedule the flow
Summing up
58. DBA co-pilot
Step 1, install PostgreSQL in Docker
Step 2, create the database
Step 3, create the table
Step 4, mock the data
Step 5, exploratory analysis with SQL
Step 6, exploratory analysis with Python
Summing up
Conclusion
Points to remember
Further reading
Exercises
11. Marketing and Sales with GPT
Introduction
Structure
Objectives
GPT in bid writing
Vision
Chatbots and conversational agents
Vision
Content generation and personalized marketing
Vision for 10X Batteries
Recipes
59. Generating sales emails and product descriptions
Step 1, mock up data
Step 2, personalized email
Step 3, sentiment analysis
Step 4, press release
Wrapping up
60. Automating content generation for social media
Step 1, preparing a mocked-up stream
Step 2, create an assistant
Step 3, classifying inputs
Step 4, creating automated responses
Step 5, clean up
Wrapping up
61. Sales forecasting and competitive intelligence
Step 1, prepare historical data
Step 2, generate forecasting prompts
Step 3, analyze sales forecasts and competitive insights
Wrapping up
62. GPT-based support of bid decision
Step 1, mock up a tender document
Step 2, extract key information
Step 3, balanced scorecard
Step 4, assess strategic fit
Step 5, estimate resource requirements
Step 6, generate a recommendation
Wrapping up
Conclusion
Points to remember
Further reading
Exercises
12. Intellectual Property Management with GPT
Introduction
Structure
Objectives
IP management fundamentals
AI in intellectual property management
Prior art in text summarization
Prior art in text generation
Patent Client
Purpose and functionality
Summing up
Gold standards
10X Batteries process
Buy or build decision
Buy prebuilt
Hire an external expert
Build in-house
Summing up
Recipes
63. Patent summarization from HTML
Method
Step 1, patent retrieval
Step 2, text extraction
Step 3, summarization
Summing up
64. Pythonic patent summarization
65. Analyzing USPTO trademark search results
Ingredients
Method
Step 1, get USPTO data
Step 2, transform the XML records
Step 3, load trademark assignments into Pandas
Step 4, analyze the records with GPT
Step 5, review the results
Summing up
66. Seeding a gold standards database
Seeding with patent client
Seeding with BigQuery
Summing up
67. Topic classification
Prerequisites
Steps
Step 1, setup environment
Step 2, prepare data
Step 3, prepare classifier
Step 4, define the training configuration
Step 5, measure the baseline
Step 6, fine-tune
Step 7, review results
Summing up
Conclusion
Points to remember
Further reading
Exercises
13. GPT in Manufacturing
Introduction
Structure
Objectives
Intersection of GPT and manufacturing
Embracing Industry 4.0 with GPT
Programming challenges in manufacturing robotics
Recipes
68. Streamlining quality control
Dataset synthesis
GPT integration for anomaly detection
Result
Summing up
69. Programming manufacturing robots
Step 1, system prompt
Step 2, bridge GPT and the robotics toolbox
Step 3, MaxBot class
Step 4, define the co-pilot
Step 5, initiate the simulator
Step 6, test the co-pilot
Summing up
70. Business analysis co-pilot
Summing up
71. Data engineering co-pilot
Step 1, pre-flight check
Step 2, downloading and initial assessment
Step 3, file structure analysis
Step 4, summarize the contents
Summing up
72. Data science co-pilot
Step 1, observe
Step 2, orient
Step 3, decide
Step 4, act
Summing up
73. CSV analysis with Perspective
Step 1, spin up Perspective
Step 2, explore the data
Step 3, discuss with Max Data
Step 4, next steps with Max Data
Summing up
74. Analysing cycles with Scipy
Summing up
75. Advanced visualization with Plotly
Max Data’s code review
Summing up
Conclusion
Points to remember
Further reading
References
Other resources
Additional suggestions
Exercises
14. Scaling up
Introduction
Structure
Objectives
Safety best practices
Debugging and error handling in GPT models
Understanding the nature of GPT errors
Technical debugging tools and techniques
Handling output-related issues
Error logging and analysis
Developing a standardized error handling protocol
Ethical considerations in debugging
Summing up
Optimizing the performance of GPT models
Summing up
Deploying GPT models in production
Summing up
Recipes
76. API request parallel processor
Environment
Parallel request function
Implementing parallel processing
Performance comparison
Testing and observation
77. Vertical scaling
Simple application
Setting up your Docker environment
Building and running your Docker container
Scaling vertically
Findings
78. Horizontal scaling
Blueprinting your Docker environment
Sentiment analysis application
Building and running
Performance testing
Conclusion
Further reading
Exercises
Key takeaways
15. Emerging Trends and Future Directions
Introduction
Structure
Objectives
Your arc of execution
Invent new opportunities
Deploy the future
Optimize
GPT’s road map
Efficiency improvements
Enhanced cognition
Next-generation model architectures
The future of Python
Community that works
Python in Excel
Invent then deploy
Python’s unique role in AI
Why fluency in Python matters
Expanding horizons
Applications across domains
Multimodal capabilities
IT's 4th Platform
Ethics and society
Conclusion
Index
[AI] Williams Neil - Python GPT Cookbook / Книга рецептов Python GPT [2025, PDF/EPUB, ENG] [uztracker.net-24928].torrent  
Торрент: Зарегистрирован [ 2025-06-01 12:54 ]

info_hash: 965FD351594BEEA1B6AB7DB54F8A37C39CDA2D18

Скачать .torrent


18 KB

Статус: проверено · MAGNAT · 6 месяца 4 дня назад
Скачано: 119 раза
Размер: 13.97 MB
Оценка: 
(Голосов: 0)
Поблагодарили: 0  Спасибо
Показать сообщения:    
Ответить на тему Главная » Литература » Книги FB2 » Учебно-техническая литература

Текущее время: 05-Дек 15:31

Часовой пояс: UTC + 5



Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы можете скачивать файлы

[  Время выполнения: 0,5714 сек  |  MySQL: 0,5521 сек (97%) · 19 запр.  |  сжатие Gzip: выкл  |  Память: 394.19 KB / 2.72 MB / 1.75 MB  ] |  |  |