[AI] Trivedi Anand / Триведи Ананд - Building LLMs with PyTorch / Создание LLMS с помощью PyTorch [2025, PDF/EPUB, ENG]

Ответить на тему Главная » Литература » Книги FB2 » Учебно-техническая литература
Статистика раздачи
Размер:  35.59 MB   |    Зарегистрирован:  6 месяца 4 дня   |    Скачано:  317 раза
Список скачавших: Нет
Работает мультитрекерная раздача

Полного источника не было: Никогда

 
Автор Сообщение

MAGNAT ®

Пол: Мужской

Стаж: 10 месяца 30 дня

Сообщений: 28494

Откуда: RU

Наличие запрета: Нету запретов


Награды: 16 (Подробнее)

Admin (Количество: 1) Активный релизер 3 (Количество: 1) Активный релизер 2 (Количество: 1) Легенда (Количество: 1) Активный релизер 5 (Количество: 1)
Вне форума [Профиль] [ЛС]

Создавать темы 01-Июн-2025 12:53 | #1 · Автор

[Код]

Building LLMs with PyTorch: A step-by-step guide to building advanced AI models with PyTorch / Создание LLMS с помощью: Пошаговое руководство по созданию продвинутых моделей искусственного интеллекта с помощью PyTorch
Год издания: 2025
Автор: Trivedi Anand / Триведи Ананд
Издательство: BPB Publications
ISBN: 978-93-65898-255
Язык: Английский
Формат: PDF/EPUB
Качество: Издательский макет или текст (eBook)
Интерактивное оглавление: Да
Количество страниц: 589
Описание: PyTorch has become the go-to framework for building cutting-edge large language models (LLMs), enabling developers to harness the power of deep learning for natural language processing. This book serves as your practical guide to navigating the intricacies of PyTorch, empowering you to create your own LLMs from the ground up.
You will begin by mastering PyTorch fundamentals, including tensors, autograd, and model creation, before diving into core neural network concepts like gradients, loss functions, and backpropagation. Progressing through regression and image classification with convolutional neural networks, you will then explore advanced image processing through object detection and segmentation. The book seamlessly transitions into NLP, covering RNNs, LSTMs, and attention mechanisms, culminating in the construction of Transformer-based LLMs, including a practical mini-GPT project. You will also get a strong understanding of generative models like VAEs and GANs.
A single idea drove this book: How can anyone who wants to start their journey into AI begin? How can someone understand the complex concepts of LLMs, Generative AI, and Diffusion Models? How can those who want to change existing AI programs and models, or even build new models from scratch, get started?
By the end of this book, you will possess the technical proficiency to build, train, and deploy sophisticated LLMs using PyTorch, equipping you to contribute to the rapidly evolving landscape of AI.
What you will learn:
- Build and train PyTorch models for linear and logistic regression.
- Configure PyTorch environments and utilize GPU acceleration with CUDA.
- Construct CNNs for image classification and apply transfer learning techniques.
- Master PyTorch tensors, autograd, and build fundamental neural networks.
- Utilize SSD and YOLO for object detection and perform image segmentation.
- Develop RNNs and LSTMs for sequence modeling and text generation.
- Implement attention mechanisms and build Transformer-based language models.
- Create generative models using VAEs and GANs for diverse applications.
- Build and deploy your own mini-GPT language model, applying the acquired skills.
Who this book is for:
Software engineers, AI researchers, architects seeking AI insights, and professionals in finance, medical, engineering, and mathematics will find this book a comprehensive starting point, regardless of prior Deep Learning expertise.
PyTorch стал универсальной платформой для создания передовых больших языковых моделей (LLM), позволяющей разработчикам использовать возможности глубокого обучения для обработки естественного языка. Эта книга послужит вам практическим руководством по освоению тонкостей PyTorch, которое поможет вам создать свой собственный LLM с нуля.
Вы начнете с освоения основ PyTorch, включая тензоры, автоградацию и создание моделей, а затем погрузитесь в основные концепции нейронных сетей, такие как градиенты, функции потерь и обратное распространение. Пройдя через регрессию и классификацию изображений с помощью сверточных нейронных сетей, вы затем познакомитесь с расширенной обработкой изображений с помощью обнаружения объектов и сегментации. Книга плавно переходит в NLP, охватывая RNN, LSTM и механизмы внимания, кульминацией которых является создание LLM на основе трансформаторов, включая практический мини-проект GPT. Вы также получите четкое представление о генеративных моделях, таких как VAE и GAN.
В основе этой книги лежит одна идея: как может начать свой путь в ИИ каждый, кто хочет? Как можно разобраться в сложных концепциях LLM, генеративного ИИ и диффузионных моделей? Как могут начать те, кто хочет изменить существующие программы и модели искусственного интеллекта или даже создать новые модели с нуля?
К концу прочтения этой книги вы будете обладать техническими знаниями, необходимыми для создания, обучения и внедрения сложных LLM-систем с использованием PyTorch, что позволит вам внести свой вклад в быстро развивающийся ландшафт искусственного интеллекта.
Чему вы научитесь:
- Создавать и обучать модели PyTorch для линейной и логистической регрессии.
- Настраивать среды PyTorch и использовать графическое ускорение с помощью CUDA.
- Создавать CNN для классификации изображений и применять методы трансферного обучения.
- Освоить тензоры PyTorch, автоградацию и построить фундаментальные нейронные сети.
- Использовать SSD и YOLO для обнаружения объектов и сегментации изображений.
- Разрабатывать RNN и LSTM для моделирования последовательности и генерации текста.
- Внедрять механизмы внимания и создавать языковые модели на основе трансформаторов.
- Создавать порождающие модели с использованием VAE и GAN для различных приложений.
- Создайте и разверните свою собственную языковую модель mini-GPT, применяя приобретенные навыки.
Для кого предназначена эта книга:
Инженеры-программисты, исследователи искусственного интеллекта, архитекторы, ищущие идеи в области искусственного интеллекта, а также специалисты в области финансов, медицины, инженерии и математики найдут эту книгу полезной для начала, независимо от их предшествующего опыта в области глубокого обучения.

Примеры страниц (скриншоты)

Оглавление

1. Introduction to Deep Learning
Introduction
Structure
Objectives
Applications and benefits of industrial deep learning in modern
industries
Why PyTorch, and not TensorFlow
My experience with PyTorch
Understanding deep learning
Learning about artificial neuron
Examples of neural networks in action
Learning how neurons work
Decoding the mysterious black box
Arrangement of neurons makes the difference
Understanding the learning process of neural networks
Deep learning model lifecycle
Running all the codes
Bare bones of machine learning example
Conclusion
2. Nuts and Bolts of AI with PyTorch
Introduction
Structure
Objectives
Neural network and neurons
Tensor simplified
Running a pre-trained PyTorch model
Introduction to PyTorch modules with examples
Linear regression with Pytorch
pytorch.nn module
Significance of using zero_grad()
Understanding gradients
Getting to lowest point in hilly terrain with blindfold
Striving to find the absolute lowest points
Error, loss and cost
Cost versus loss
Learning rate of Global Minima
Learning rate and batch size
Improving linear neural network
Importance of incorporating non-linearity in deep learning models
Importance of non-linearity
Simple classification as example of non-linearity
Conclusion
Points to remember
3. Introduction to Convolution Neural Network
Introduction
Structure
Objectives
Need of deep networks for images
Computer vision without neural networks
Computer vision with neural networks
Visualizing a convolution
Convolution
Filters
Choice of filters in CNN
Convolution to pooling
Flattening
Passing data to dense layers
PyTorch torchvision module
torchvision.transforms
PyTorch datasets and dataloaders
Combining components to create a complete CNN network
Convolutional layers
Activation functions
Max-pooling layers
Flatten layer
Fully connected layers
Choice of parameters
CNN model on custom datasets
Usage of CNN in enterprises
Visualizing CNN internal layers
Conclusion
4. Model Building with Custom Layers and PyTorch 2.0
Introduction
Structure
Objectives
Designing and developing models with PyTorch
NN module in PyTorch
Step-by-step model creation
Exploring linear layers in PyTorch
Convolutional layers available in PyTorch
Other important layers
Constructing neural networks in PyTorch
Simplicity of nn.Sequential
Subclassing nn.Module
Iterative designs with nn.ModuleList
Organizing with nn.ModuleDict
Combining methods: Hybrid approaches
Nested models for modularity
Preparing for deployment: TorchScript
Nested models for modularity in PyTorch
Famous neural network architectures using nested models and
modularity
Residual Networks
Inception
Crafting bespoke layers and activation functions in PyTorch
Creating custom layers in PyTorch
Using the custom layer
Weight initialization
Custom activation function
Pretrained models and PyTorch Hub
PyTorch Hub
Saving, exporting, and understanding model methods with examples
Conclusion
5. Advances in Computer Vision: Transfer Learning and Object
Detection
Introduction
Structure
Objectives
Necessity of transfer learning
Transfer learning
Training later layers
Hierarchical feature learning in neural networks
Reasons for training only last layers
Example
Brain tumor image classification
Object detection
Visualizing feature maps in a pre-trained Faster R-CNN model
Methods of object detection
Fast R-CNN
Faster R-CNN
Conclusion
6. Advanced Object Detection and Segmentation
Introduction
Structure
Objectives
Drawbacks of Faster R-CNN
Exploring SSD, YOLO, and transformer-based solutions
Single Shot MultiBox Detector for object detection
Dive deeper into SSD
You Only Look Once
What makes YOLO so fast
YOLO updates
YOLO versus SSD
Practical example for YOLO
Training YOLO5 on custom dataset
Image segmentation
Image segmentation implementation
Conclusion
7. Mastering Object Detection with Detectron2
Introduction
Structure
Objectives
Versatility of Detectron2
Detectron2 architecture
Setting up Detectron2 in Google Colab
Exploring Detectron2 models zoo
Object detection on custom dataset
Tools for annotating datasets in object detection and image
segmentation
Implementing image segmentation
Advanced human pose estimation with Detectron2
DensePose
Demonstrating dense pose estimation
Project: Yoga pose estimation
Conclusion
8. Introduction to RNNs and LSTMs
Introduction
Structure
Objectives
Emergence of specialized neural networks for sequences
Handling long sequences
Recurrent neural networks
RNN vs Feed Forward Neural Networks
Example: Language translation
Limitations of RNNs
Working of RNN
PyTorch components for RNNs and LSTM networks
Understanding RNN cell and RNN layer
Formula for hidden state update in a basic RNN cell
Example calculation
RNN layer
Predicting the next even number in sequence
Understanding the challenges with RNNs
Why these problems occur
Vanishing and exploding gradient
Vanishing gradient
Exploding gradient
Context vector
Working example: Language modeling
LSTM deep dive
LSTMs memory cell
Internal working of LSTM
Basic architecture
Working of LSTM
LSTM implementation stock price prediction
Downloading and visualizing data
Visualizing last two years’ data for reliance
LSTM for stock prediction
Conclusion
9. Understanding Text Processing and Generation in Machine
Learning
Introduction
Structure
Objectives
LSTM models
Word embeddings
One-hot encoding
Example
Problems with one-hot encoding
Introduction to word embeddings
How word embeddings capture semantic information
Creating word embeddings from scratch
PyTorch embedding layer
Initializing embedding layer
Using embedding layer
Example: Embedding layer in a neural network
Tips and considerations
Comparing two sentences using word embeddings in PyTorch
Using predefined word embeddings
LSTM application in text generation
Advantages of practical LSTM-based text generation
Pride and Prejudice by Jane Austen as dataset
Implementation
Stacked LSTM
Implementing stacked LSTM in PyTorch
Sequence to sequence models
Variable input and output lengths
Overview of Seq2Seq models
Encoder
Attention mechanism
Decoder
Transformer model
Applications and evolution
Language translation
Image captioning
Implementing image captioning
EncoderCNN class
DecoderRNN class
CNNtoRNN class
Attention is all you need
Without attention mechanism
With attention mechanism
Attention technical overview
Components of attention
Evolution from attention to transformers
Using attention with LSTM
Using attention with LSTMs
Going beyond with transformers
Attention example
Integrating attention mechanism with LSTM for sequence
classification
Use case
Types of attention mechanisms
Why do we need different attention mechanisms?
Key types of attention mechanisms
Conclusion
10. Transformers Unleashed
Introduction
Structure
Objectives
NLP revolution with attention
Power of attention mechanisms
Understanding the difference between attention versus transformers
Transformers: A complete model using attention
Transformer architecture essentials
Understanding transformers through examples
Challenge
How transformers calculate attention
Head in multi-head attention
This process is for one head
Example: Explaining the encoder process
Positional encodings
Working
Why it works
Complete encoder working
Post multi-head attention processing in transformer encoders
Decoder in transformer
Input to the decoder
Start with a special token
Masked multi-head attention
Add and Norm
In context of transformers
Feed-forward
Add and Norm
Linear layer and softmax
Step-by-step translation from English to French with a transformer
model
Input from the encoder
Begin with a start token
Self-attention on generated tokens
Cross-attention with encoder outputs
Predict the first word
Feed the generated word back into the decoder
Cross-attention with encoder outputs
Predict the next word
Repeat until end token
Implementing language translation using transformer
Simple example using nn.Transformer
Downloading datasets
Tokenization and setting vocabulary
Adding positional encoding
Token embedding
Seq2Seq transformer
Masking
Sentence representation
Adding padding
Creating masks
Square subsequent mask for target sequence
Application of masks in attention mechanism
Final result of masking and its effect
Utility function for text
Example with specific values
Training
Greedy decode
Greedy decoding example
Advanced decoding strategies
Translating
Deep dive into architectures and applications
Vision transformers
Traditional approach with CNNs
Better understanding of vision transformers work
Implementing vision transformer from scratch
Vision transformer architecture
Step 1
Step 2
Step 3
Step 4
Step 5
Future directions
Conclusion
11. Introduction to GANs: Building Blocks of Generative Models
Introduction
Structure
Objectives
Generative AI, the AI artist
Discriminative versus generative models
Working of generative AI
Working of GANs via a deepfake example
How transformers are different
Transformer model diagram
Practical example of GANs
Loading the dataset
Generating new images
What GANs can do
Step-by-step guide to generating anime faces with PyTorch
Architecture
Generator
Discriminator
Training code
Train the discriminator
Train the generator
Conclusion
12. Conditional GANs, Latent Spaces, and Diffusion Models
Introduction
Structure
Objectives
Convolutional GAN
Using convolutional neural networks
Convolutional filters
Convolution operation
Importance of transposed convolutions in upsampling
Importance of convolutions in downsampling
Training process of a convolutional GAN
Convolutional GANs with CelebA dataset
CelebA dataset
Improvements in the architecture compared to normal GANs
Explanation of the practical example
Generator class
Defining the network layers
Main training loop
Understanding the training process
Latent space in GAN
Latent space in GANs using a pretrained model
Conditional GANs
Use of conditional GANs
Practical implementation of CGAN
Forward method, generating an image
Forward method, evaluating the image
Output after training
Diffusion models
Types of diffusion models
Applications of diffusion models
Example
Train a diffusion model from scratch
U-Net model for better prediction
Working of U-Net
U-Net model implementation
Conclusion
13. PyTorch 2.0: New Features, Efficient CUDA Usage, and
Accelerated Model Training
Introduction
Structure
Objectives
Introduction to PyTorch 2.0
PyTorch 2.0 and CUDA 11.8
Installing or upgrading to PyTorch 2.0 with CUDA 11.8
On Google Colab
On local environment
PyTorch 2.0 comparison with previous versions
Mixed precision training
Simplified precision in PyTorch 2.0
Asynchronous CUDA execution
Asynchronous CUDA execution
Accelerating training
Leveraging modern GPU capabilities to enhance model
performance
Mixed precision training
TorchScript
Using TorchScript
Taking advantage of new kernel libraries
Leveraging new kernel libraries in PyTorch 2.0
Distributed training using PyTorch 2.0/1.x
Advantages of distributed training
Implementation specifics in PyTorch 2.0
Overview of distributed training implementation
Conclusion
14. Building Large Language Models from Scratch
Introduction
Structure
Objectives
Building a GPT-like model from scratch
Understanding GPT models
Visualizing model growth
Understanding model parameters in machine learning
Comparing GPT and the original transformer architecture
Understanding language modeling
From basic to large language models
'Large' in large language models
Pre-training and fine-tuning
Pre-training large language models
Pre-training ChatGPT
Role of pre-training
Instruction Pre-Training
Finetuning LLM
Pre-Training
Fine-tuning
Fine tuning methods
Building an LLM from scratch
Multi-head attention and the block in GPT
Working of multi-head attention
Transformer block
GPT model
Size of GPT model
Building large models like GPT-3 and LLaMA
Conclusion
Index
[AI] Trivedi Anand / Триведи Ананд - Building LLMs with PyTorch / Создание LLMS с помощью PyTorch [2025, PDF/EPUB, ENG] [uztracker.net-24925].torrent  
Торрент: Зарегистрирован [ 2025-06-01 12:53 ]

info_hash: 0E7541397BEC9E5D42EC6D176963207359EEF24B

Скачать .torrent


12 KB

Статус: проверено · MAGNAT · 6 месяца 4 дня назад
Скачано: 317 раза
Размер: 35.59 MB
Оценка: 
(Голосов: 0)
Поблагодарили: 0  Спасибо
Показать сообщения:    
Ответить на тему Главная » Литература » Книги FB2 » Учебно-техническая литература

Текущее время: 05-Дек 16:21

Часовой пояс: UTC + 5



Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы можете скачивать файлы

[  Время выполнения: 0,7591 сек  |  MySQL: 0,7373 сек (97%) · 20 запр.  |  сжатие Gzip: выкл  |  Память: 394.55 KB / 2.71 MB / 1.73 MB  ] |  |  |